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Abstract. Currently, software certification and verification is perceived
as overly difficult and hard to understand task in program development.
This image can be changed through effective instruction of prospect pro-
grammers during their studies. Teaching Hoare logic is a process that can
be made significantly easier if appropriate tools are employed. Having an
environment tailored to the style and content of a particular lecture is
especially beneficial. We argue that current state of related technology
is such that it is possible to implement a customised tool with accept-
able effort. We illustrate our point by showing selected aspects of the
implementation of one such application, which we call HAHA (Hoare
Advanced Homework Assistant).

1 Introduction

Hoare logic plays a fundamental role in the field of program verification and for-
mal semantics. In its basic form, it is a simple and well studied [2] framework. Its
numerous variants and extensions are of great use in both theoretical research in
the field of formal methods and practical implementation of various verification
tools.

Unfortunately, the experience of our faculty shows that this is not how a
typical student sees the subject of Hoare logic. Rather, it is perceived as tedious,
boring, obscure and, above all, utterly impractical. Its principles are, in general,
poorly understood, and the whole concept is believed by many to be no more
than a weird part of computer science history, which is inflicted upon them by
their professors solely for the reason of sentiment. Even those who manage to
grasp the formal rules of Hoare logic seldom see any potential uses for it in actual
software development.

It is doubtless that this sorry state of affairs has multiple reasons. Some of
these lie deep in the human nature, and it is beyond both our capability and
the scope of this paper to rectify them. But there is one issue, which, in our
opinion, contributes greatly to the aforementioned problem, that we can hope
to at least partially resolve. It is the issue of tools that are used to teach Hoare
logic. In many cases, said tools consist of a pen and few sheets of paper. These
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respectable instruments have proven to be an indispensable educational aid over
centuries. And yet, in the particular application that is our matter of interest
here, they appear to show some deficiencies. Verifying that a Hoare program
written on a sheet of paper is correct is a very tedious task. It is much harder
than proving the correctness of the very same program in a less formal way. What
is worse is that the chances of making a mistake can be argued to be similar for
both approaches. It is, therefore, not appropriate to blame students for failing to
understand the importance of a quality assurance method which requires a very
significant amount of effort for no perceived gain. The fact that the whole exercise
is performed on paper, without any aid from the computer (save, perhaps, in
the matter of typesetting) further enforces the view that Hoare logic is a purely
theoretical subject of little importance. Tediousness of the verification process
is also an issue for lecturers, as it turns authoring and grading assignments into
truly formidable tasks.

The most direct way of tackling the troubles we just described is to use
automated formal verification software to facilitate checking the correctness of
Hoare programs. Quite a few of such tools are in existence. In fact, the area
has enjoyed a rather significant progress in development during the recent years.
Systems such as ESC/Java [9,22], Frama-C [7,10] or Microsoft VCC [11] have
not yet made their way into the everyday toolbox of an average developer, but
have proven to be usable in the verification process of various software projects.
It can be safely assumed that a tool, which is capable of assuring correctness of
something as complex as memory accesses performed by a hypervisor, could also
be successfully employed in verification of simple programs that are used during
lectures on Hoare logic.

It is somewhat surprising that, in spite of the features offered by the afore-
mentioned tools, static verification systems are quite rarely used in the indus-
try [18]. Existence of usable systems is not the only condition necessary to ensure
widespread adoption of the formal verification techniques. It requires also aware-
ness of the developers that such tools exists and their consciousness of the way
the methods behind the tools work. Therefore, it is important to shape devel-
opers’ culture so that more refined methods of software cultivation that involve
reasoning on programs are well understood and perceived as practical. One im-
portant way to achieve this is to show the methods to future programmers during
their curriculum in an attractive, modern way.

The problem, however, is that the design of these powerful systems is geared
towards applications in large scale software development, rather than education,
and these two goals are, at least in some aspects, exclusive. One of the reasons
is thar rich feature set of languages such as C or Java, as well as the need to
minimize the burden that the verification system puts on a programmer during
creation and evolution of code, invariably result in complexity of the underlying
formal logic, which prohibits its use in an introductory course.

There is a number of tools, such as KeY-Hoare [8], that are designed specif-
ically for the purpose of being educational aids. Unfortunately, these are not
as well developed as their commercially applicable counterparts. In addition,
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variants of Hoare logic which are implemented by said tools are seldom com-
patible with these from existing teaching material. It should also be noted that,
while automated systems can prove to be very helpful by alleviating the issue of
the amount of work required for verification, they might also hamper student’s
understanding of the principles of Hoare logic. That is because the ease of ex-
perimentation afforded by such software often allows one to solve an exercise
by trial and error, with little regard for the strict formal rules that govern the
correctness of a solution.

In this paper, we argue that an opportunity to improve the described situa-
tion lies in the current state of the art in the areas of domain specific language
design and automated satisfiability solving. Existing frameworks and tools make
the implementation of a polished, usable (although only in educational setting)
software verification system a relatively simple task. Creation of tools designed
to suit a particular set of lectures thus becomes feasible. It is also conceivable
to include the students in the development effort. We conjecture that having a
chance to implement the rules of a Hoare logic in a complete and feature-rich
tool, instead of just applying these rules on paper, could greatly further a stu-
dent’s understanding of the principles of said logic. To illustrate our claim, we
present here details of the design of a verification system which we developed.
Our goal is not to provide all implementation details, but rather to show the
amount and kind of effort that was necessary to create the tool.

2 HAHA overview

Motivated by the difficulties we encountered when teaching Hoare logic as a part
of a course in formal verification and semantics, we decided to create an interac-
tive tool to help us. That tool, called Hoare Advanced Homework Assistant, or
HAHA, is a development environment based on Eclipse. For technical reasons
we choose to distribute it as a complete application, but, in principle, it could
also be used as a set of Eclipse plugins. Let us now describe the nature and
capabilities of the tool, and then proceed with discussion of its implementation.

HAHA is an editor for simple while programs. It has all features that are
expected of a modern IDE, such as syntax highlighting, automated completion
proposals and error markers. Once a program is entered, it is processed by a
verification conditions generator, which implements the rules of Hoare logic.
The resulting formulae are then passed to an automated prover. If the solver is
unable to ascertain the correctness of the program, error markers are generated
to point the user to the assertions which could not be proven. A very useful
feature is the ability to find counterexamples for incorrect assertions. These are
included in error descriptions displayed by the editor.

The input language of HAHA is that of while programs over integers and
arrays. We designed it so that its features and data types match those supported
by state of the art satisfiability solvers. As the language is fairly standard, we
refrain from giving its actual grammar, although fragments of it can be found in
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later sections. Instead, we present an example of a program, and discuss some
finer features of HAHA syntax that it shows.

predicate sample (x : Z) = (x = 42)
axiom t e s t : f o r a l l x : Z y : Z , ( x + y)^2 = x^2 + 2∗x∗y + y^2

function nsum(n : Z) : Z
precondition n_is_pos i t ive : n > 0
postcondition gauss : nsum = n ∗ (n − 1) / 2

var
i : Z
s : Z

begin
s := 0
{ n_is_pos i t i ve : n > 0 } { s = 0 }
i := 0
{ n_is_pos i t i ve : n > 0 } { s = 0 } { i = 0 }
while i < n do

invariant n_is_pos i t ive : n > 0
invariant i_le_n : i <= n
invariant gauss : s = i ∗ ( i − 1) / 2
counter L : Z [L − 1 ] , L = n − i

begin
s := s + i
{ count : L = n − i } { n_is_pos i t i ve : n > 0 }
{ i_lt_n : i < n } { s = i ∗ ( i + 1) / 2 }
i := i + 1

end ;
{ s = n ∗ (n − 1) / 2 }
nsum := s

end

Fig. 1. Example program. The function computes the sum of numbers from 1
to n using a loop. The precondition states that the final result is same as would
be obtained from Gauss’ formula

The program consists of a single function, which calculates the sum of natural
numbers from 1 to n, for a given value of n. The specification simply states
that the result (which, just like in Pascal, is represented by a special variable)
matches the well known Gauss’ formula, as long as the argument is not negative.
Here it must be noted that the type Z, used in the example program, represents
unbounded (that is, arbitrarily large) integers. This is one example of a design
choice that would not necessarily be valid for a verifier meant to be used in
actual software development. The reason is that errors related to arithmetic
overflows are quite common, and are often exploited for malicious purposes. It
seems reasonable to require a static analyser to be able to ensure that no such

4



mistakes are present in the checked code. In our setting, these considerations play
a less important role, so we were able to choose a simpler model of arithmetic. On
the other hand, it might be actually desirable to be able to illustrate difficulties
associated with the necessity of avoiding or handling overflows. For this reason
we have created a modification of our tool to allow the use of Int variables,
modeled as 32-bit vectors. The fact that we were able to add such feature with
relative ease seems to reinforce the claims which were stated in the introduction.

Structure of the language appears to be fairly self explanatory. Let us note
that, following the example of Eiffel, loop invariants can be named. This is also
extended to other types of assertions. The names are useful for documentation
purposes, and make error messages and solver logs much easier to read. It is
possible to give multiple invariants for a single loop. Similarly, a sequence of
assertions is interpreted as a conjunction. This is notably different from the
approach taken in some textbooks and course material, in which an implication
is supposed to hold between two consecutive assertions not separated by any
statement. We believe the former interpretation to be clearer, but, to illustrate
the ease with which HAHA can be modified to fit the requirements of a particular
course, we have implemented the latter in a variant of our tool. Finally, let us
remark that an explicit application of the weakening rule can be unambiguously
represented with the help of the skip statement.

In the example program, each pair of consecutive statements is separated by
assertions. Rules of the Hoare logic allow these midconditions to be inferred au-
tomatically, as long as loop invariants are provided. In HAHA, however, no such
inference is performed. All assertions must be explicitly stated in the program
code. This might seem surprising, since the need to write many, often trivial,
formulae increases the amount of work necessary to create a verified program.
Practical verification tools are, typically, able to infer most assertions, and some-
times even fragments of the loop invariants. In spite of this, we believe that, in
the case of a teaching aid, our approach is more beneficial. The reason is that it
forces students to more precisely understand what is the set of states reachable
at a given program point, and what exactly must be stated about it in order
to make the program correct with regard to formal rules of the Hoare logic.
Finally, let us note that addition of an assertion inference mechanism is another
example of a simple modification that can be made to tailor the tool to custom
requirements (although we have not performed this particular experiment).

HAHA supports proofs of both partial and total correctness. To facilitate
the latter, we allow an invariant to be parametrized by an integer variable. The
conditions generated for such an invariant, which we call a counter, ensure that
the loop condition holds precisely when the invariant formula is true for an
argument of 0. It must also be proved that, if the invariant holds before the
loop for an argument of L ∈ N, it will, after the loop body is executed, hold
for a number L′ ∈ (N) strictly smaller than L. Concrete syntax used by HAHA
for the purpose of termination proving can be seen in the example program,
although proving termination of this particular loop is not a very challenging
task. The expression in square brackets represents the aforementioned value of
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L′. As a side note, we are also working on adding support for binary assertions
(and corresponding total correctness rules) to HAHA.

Before we conclude this brief examination of the capabilities of HAHA, let us
turn our attention to the very first lines of the example program. They contain
definitions of an axiom and a predicate. They are provided only as an illustration,
and are not actually used in the rest of the code. When creating specifications
for more complex procedures, however, it is often desirable to use predicates to
shorten and simplify notation. Our experiences show that this is especially useful
in code operating on arrays, as it tends to employ rather complex assertions.
Axioms are also helpful, especially when the automated solver is unable to prove
a formula that we know to be true. We shall return to this issue when discussing
details of the solver technology employed by HAHA.

3 Implementation of XText-based editors

In this section, we focus on the structure and implementation of various com-
ponents of the Hoare Advanced Homework Assistant. In particular, we are in-
terested in modules responsible for parsing, scoping rules, validation and com-
pilation, which, in our case, amounts to verification condition generation. These
are the principal elements from which a typical XText based development en-
vironment is built. Our discussion is quite detailed, since it is our intention to
allow the reader to estimate costs and effort necessary to create or modify a tool
similar to HAHA. We focus the presentation of each component on details of its
implementation that are specific to usable graphical development environments,
as opposed to simpler, command line compilers.

The base tool that connects all HAHA components is XText [14]. It is an
open-source Eclipse framework for development of programming languages. It
was originally meant to be used for simple domain specific languages, rather than
full-fledged ones, such as C or Java. While its design has evolved, and it can now
be used to create quite complex systems, it is still best suited for situations when
the project is small, or the language’s syntax, semantic and scoping rules can be
modified to make best use of the default behaviour provided by XText. HAHA
appears to be a prime example of such a project. The application is pretty modest
in size and required features, and details of the language design can be adjusted
to make editor implementation easier. Drawbacks of the XText framework are
less prominent in this kind of system, and its advanced capabilities allow us to
create a modern and feature rich development environment with little effort.

Let us now proceed with description of the parsing process, which is, quite
naturally, guided by a context-free grammar. The flavour of grammars used by
XText is similar to that found in other parser generators (in fact, XText uses
the well known ANTLR generator to create the actual parsing code). Some
peculiarities of the employed grammar model are illustrated by example rules
from Fig. 2.

As we can see, Fig. 2 shows a fairly standard example of an attributive
grammar in EBNF notation. Attribute values can be obtained from tokens or rule
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Function :
" func t i on " name=ID " ( " arguments=ArgumentList " ) "

" : " resu l tType = Type
( ( p r e cond i t i on s+=Precond i t ion ) |
( po s t c ond i t i on s+=Postcond i t i on ) |
( l o c a l s+=Loca l s ) )∗ body = HoareTriple ;

Statement : SimpleStatement | CompositeStatement ;
SimpleStatement : Skip | Assignment ;
CompositeStatement : Block | Cond | Loop ;

As s e r t i onL i s t : { As s e r t i onL i s t } (=> a s s e r t i o n s += Asse r t i on
(=> a s s e r t i o n s += Asse r t i on )∗ ) ? ;

HoareTrip le : p r e cond i t i on = As s e r t i onL i s t
statement = Statement
po s t cond i t i on = As s e r t i onL i s t (=> " ; " )? ;

Ca l l returns Express ion : Var |
{ Ca l l } func t i on=[ Ca l l ab l e ] => " ( " args=ActualArgs " ) " ;

Fig. 2. XText grammar

calls. It is not possible to transform said values in any way, save by composing
them into lists with the operator +=. Semantic predicates can be employed to
disambiguate conflicts in the resulting LL(∗) parser. This is a convenient solution
for, among other things, the dangling else problem.

One aspect of the presented grammar that requires a more detailed explana-
tion is the presence of nonterminals enclosed in square brackets. This construct is
used to represent references to other nodes of the syntax tree. A simple example
is the call rule, which contains a reference to a procedure declaration. Syntacti-
cally, a reference corresponds to an identifier, that is, the ID lexical symbol (it
is possible to use other symbols). The process of converting identifiers to node
pointers is governed by scoping rules, which must be implemented in Java code
in a manner which we now discuss.

Rules have the form of methods in a Java class. Their names and argument
types are used to decide which rules apply to which reference. This technique is,
unfortunately, rather error-prone, as there is no easy way to detect misspelled
names. Alternative approaches have been developed, but, due to the simplic-
ity of our project, we have not taken advantage of them. The example code in
Fig. 3 shows some of the rules responsible for the visibility of local variables.
First method ensures that, when a reference to local variable is being untangled
inside a procedure, all declared locals will be available. Second simply adds a
quantified variable to the environment used in the body of a quantified formula.
The final rule states that a reference to a variable might point to a local, an
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argument, or the function’s result. An interesting aspect of the scoping mecha-
nism is that it produces all possible references in given program point, instead of
just searching for definition of a particular identifier. This allows XText to offer
automated completion proposals (note that it is possible to further customize
this mechanism).

IScope scope_Local ( f ina l Function funct ion ,
f ina l EReference r e f ) {

f ina l List<IEObjectDescr ipt ion> r e s u l t =
new ArrayList<IEObjectDescr ipt ion >() ;

for ( f ina l Loca l s l o c a l s : f unc t i on . ge tLoca l s ( ) ) {
for ( f ina l Local l o c a l : l o c a l s . g e tVar i ab l e s ( ) ) {

r e s u l t . add ( EObjectDescr ipt ion . c r e a t e (
l o c a l . getName ( ) , l o c a l ) ) ;

}}
return new SimpleScope ( IScope .NULLSCOPE, r e s u l t ) ;

}

IScope scope_Variable ( f ina l Fora l l f o r a l l ,
f ina l EReference r e f ) {

return new SimpleScope ( getScope ( f o r a l l . eContainer ( ) , r e f ) ,
scope_Quantif iedVar ( f o r a l l , r e f ) . getAl lElements ( ) ) ;

}

IScope scope_Variable ( f ina l Function func ,
f ina l EReference r e f ) {

f ina l IEObjectDescr ipt ion re su l tVar =
EObjectDescr ipt ion . c r e a t e ( func . getName ( ) ,

func . r e su l tVar ( ) ) ;
return new Sing le tonScope ( resu l tVar ,

new CompositeScope ( scope_Local ( func , r e f ) ,
scope_Argument ( func , r e f ) ,
getScope ( func . eContainer ( ) , r e f ) ) ) ;

}

Fig. 3. Scoping example

A parsed XText program is passed for further processing as an EMF model.
EMF [25] is a vastly simplified variant of UML that is used thorough many
Eclipse components, especially since Eclipse 4. Structure of a model is described
by a so-called meta-model. It can be inferred from the XText grammar, but may
also be provided separately. The latter option allows some customisation, such
as adding attributes or methods not present in the grammar. Attributes of a
model element are available in Java code by the use of accessor methods. This
mechanism is used by the sample scoping code in Fig. 3. It is also possible to
use reflection, and a switch class, which is a simple implementation of the visitor
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pattern, generated by EMF for each metamodel. We use that class extensively
for traversing programs, in particular during verification condition generation.

Parsing process ensures the absence of syntax errors in the input code. Scop-
ing checks for issues with invalid references. But there are many other rules, of
a more semantical nature, which must be satisfied by a program. For example,
we might not want to allow quantifiers to be used in actual program expres-
sions, and instead allow them only in assertions and other parts of specification.
This particular condition could, in theory, be ensured by making changes to
the grammar, but such approach is extremely cumbersome and results in a lot
of clutter and duplication in the grammar. XText contains a mechanism which
allows us to resolve this issue in a much more efficient and elegant manner. It
is based on validators, which are simply Java classes in which some methods
are marked with the Check annotation. Such methods are automatically invoked
for each AST node that matches their argument type. Example in Fig. 4 shows
the implementation of a few validator checks, including the aforementioned rule
regarding quantifier use. It is important to note the way in which errors are
reported. Methods used for this purpose are provided by XText, and their ar-
guments include the precise location of the offending AST element. This allows
the editor to link markers and other error indicators with the relevant part of
the source code.

@Check public void checkForal lType ( f ina l Quant i f i e r expr ) {
for ( f ina l Quanti f iedVar va r i ab l e : expr . getVars ( ) ) {

i f ( ! ( v a r i ab l e . getType ( ) instanceof SimpleType ) ) {
e r r o r ( " Quant i f i c a t i on ␣ over ␣ t h i s ␣ type␣ i s ␣not␣ a l lowed " ,

va r i ab l e , L i t e r a l s .DECLARED_VARIABLE__TYPE, −1);
}}}
@Check public void
checkProgramRestr ict ionsForAss ignment ( f ina l Assignment a ) {

checkExprRes t r i c t i ons ( a . getValue ( ) ) ;
}
private void checkExprRes t r i c t i ons ( f ina l Express ion expr ) {

f ina l I t e r a t o r <EObject> i t e r a t o r = expr . eAl lContents ( ) ;
while ( i t e r a t o r . hasNext ( ) ) {

f ina l EObject sub = i t e r a t o r . next ( ) ;
i f ( sub instanceof Fora l l | | sub instanceof Ex i s t s ) {

e r r o r ( " Quan t i f i e r s ␣ are ␣not␣ a l lowed ␣ in ␣ exp r e s s i on s . " ,
sub . eContainer ( ) , sub . eContain ingFeature ( ) , −1);

} else i f ( subexpr instanceof Cal l ) {
i f ( ( ( Ca l l ) sub ) . getFunct ion ( ) instanceof Pred i cate ) {

e r r o r ( " Pred i ca t e s ␣ are ␣not␣ a l lowed ␣ in ␣ exp r e s s i on s " ,
c a l l , L i t e r a l s .CALL__FUNCTION, −1);

}}}}

Fig. 4. Validation example
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Let us conclude our discussion of the implementation of HAHA with a pre-
sentation of its core component, which is the verification conditions generator.
Its implementation is surprisingly simple and clear. Rules of Hoare logic are
mapped to methods of EMF switches, which are then used to traverse the pro-
gram that is to be verified. We show one such method in full, to illustrate its
simplicity. Each method takes an AST node as argument, and can access rel-
evant pre- and post-conditions stored in the preconditions and postconditions
fields of the switch object. One thing that should be noted about the way in
which we generate the verification conditions is that we keep track of context,
that is, the program elements associated with each condition and reasons why
it was generated. This results in a slightly more verbose code, but is of immense
use during verification. That is because the context is necessary to generate ac-
curate error markers in case of prover failure. We also use it to store information
about variables, predicates and axioms that should be visible inside a verification
condition.

The method we present is concerned with processing of the conditional state-
ments. The implementation is somewhat verbose. In spite of this, it can be clearly
seen how the Java source corresponds to typical Hoare rule for conditional state-
ments found in textbooks or other learning resources. As is to be expected, it
is somewhat cluttered by code necessary to manage contexts and handle corner
cases, such as conditionals with missing else part.

The discussed code is part of a visitor class and is supposed to compute
the verification conditions and pass them to a consumer object. First few lines,
shown in Fig. 5, are responsible for constructing a context object, which provides
a link between the generated formulae and their source (an AST node). They
also contain invocation of a function which converts the condition from an AST
node to a first order formula.

public Boolean caseCond ( f ina l Cond cond ) {
f ina l VCContext i fContext =

new VCContext ( " cond_L" + getLine ( cond ) ,
ImmutableList . o f ( ( EObject ) cond ) ,

" ’ I f ’ ␣ at ␣ l i n e ␣ " + getLine ( cond ) , parentContext ) ;
f ina l DocumentedFormula condFormula =

exprToFormula . apply ( cond . getCondit ion ( ) ) ;

Fig. 5. Hoare rule for conditional statements - context construction

Conditional statements consist of a positive and negative part. Processing
the first one is straightforward, as can be seen in Fig. 6. Condition expression is
added to the list of preconditions and statements from the if body are processed
recursively.
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f ina l VCContext trueContext =
new VCContext ( " i fTrue " ,

ImmutableList . o f ( ( EObject ) cond . ge t I fTrue ( ) ) ,
" Case␣1␣−␣ cond i t i on ␣ ho lds . " , i fContext ) ;

L i s t<DocumentedFormula> extendedPrecond i t ions =
new ArrayList<DocumentedFormula>(p r e cond i t i on s ) ;

extendedPrecond i t ions . add ( condFormula ) ;

g en e r a t eVe r i f i c a t i onCond i t i on s (
trueContext , extendedPrecondit ions ,
cond . ge t I fTrue ( ) , po s t cond i t i ons , consumer ) ;

Fig. 6. Conditional statements: positive case

The negative case is somewhat more involved. To handle it, the condition
formula must first be negated and added to the list of preconditions. This is
done by the code in Fig. 7.

f ina l DocumentedFormula negatedCondit ion =
new DocumentedFormula (

new Negation ( condFormula . getFormula ( ) ) ,
" negated_condit ion " , ImmutableList . o f ( ( EObject ) cond ) ,
" Negated␣ cond i t i on " ) ;

extendedPrecond i t ions =
new ArrayList<DocumentedFormula>(p r e cond i t i on s ) ;

extendedPrecond i t ions . add ( negatedCondit ion ) ;

Fig. 7. Adding negated condition to the list of preconditions

In our grammar, the else part of a conditional statement is optional. This
must be taken into account when context for verification conditions for the neg-
ative case is constructed. Fig. 8 shows how this issue is handled.

i f ( cond . g e t I f F a l s e ( ) != null ) {
f a l s e S ou r c e = cond . g e t I f F a l s e ( ) ;

} else { f a l s e S ou r c e = cond ; }
f ina l VCContext f a l s eContex t = new VCContext ( " i f F a l s e " ,

ImmutableList . o f ( f a l s e S ou r c e ) ,
" Case␣2␣−␣ cond i t i on ␣does ␣not␣hold . " , i fContext ) ;

Fig. 8. Conditional statements: negative case context construction
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Final part of the code, presented in Fig. 9, produces verification conditions
for the case when the if condition is false. If there was an else part, it is
processed recursively. Otherwise it is stated that the preconditions should imply
the postconditions.

i f ( cond . g e t I f F a l s e ( ) != null ) {
g en e r a t eVe r i f i c a t i onCond i t i on s ( fa l s eContext ,

extendedPrecondit ions , cond . g e t I f F a l s e ( ) ,
po s t cond i t i on s , consumer ) ;

} else {
for ( f ina l DocumentedFormula post : po s t c ond i t i on s ) {

f ina l Ver i f i c a t i onCond i t i on vc =
new Ver i f i c a t i onCond i t i on (
extendedPrecondit ions , post , f a l s eContex t ) ;

consumer . p r o c e s sVe r i f i c a t i onCond i t i on ( vc ) ;
}}
return true ;

}

Fig. 9. Hoare rule for conditional statements - conditions for the negative case

4 SMT solvers

We have seen how XText allows us to create an advanced and feature rich editor
for Hoare programs. Yet such an editor would be of truly limited use if it was
not capable of ascertaining the validity of the generated verification conditions
in an automated manner. This crucial task is handled by satisfiability modulo
theorem (SMT [4]) solvers. SMT (more precisely, SMT-LIB 2.0) is a standard
which describes the input and output languages of such tools. It should be noted
that solvers, as their name implies, are used to find a valuation that makes a
formula true. Fortunately, modern solvers are also capable of verifying that a
formula is not satisfiable, and so can be used as provers (since a formula is true
iff its negation is not satisfiable). The model finding capability remains very
useful as it is used to produce counterexamples when the verification conditions
are not valid.

HAHA uses pipes to communicate with solvers via their standard input and
output channels. This approach can be argued to be somewhat inefficient, but
that is hardly a noticeable problem when the size of the input program, and
number of generated formulae, is as small as it is in our case. Unfortunately, the
whole mechanism used to communicate with solvers required a rather significant
amount of code, especially compared to other, more interesting, modules, such
as the verification conditions generator. We hope that this situation will soon
be improved, and that a generic interface to SMT solvers will be made available
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for Eclipse plugins (such as HAHA). When we undertook the development of
HAHA, we were unable to find such a library with acceptable licence and set of
features.

The area of automated satisfiability solving has enjoyed significant progress
in recent years. The class of formulae that can be successfully processed is ex-
panding. As an example, consider the sample program from Fig. 1. It contains
conditions with nonlinear expressions. Hence simpler solvers, typically based on
Presburger arithmetic, are not able to process the verification conditions gen-
erated for the discussed program. But more advanced tools, such as Microsoft
Z3[12], have such capability. Still, there are cases, often involving exponentiation
or division operators, which cannot be handled by any currently available solver.
It is, however, possible to simplify the task by providing additional axioms. These
are often augmented by instantiation patterns[23,13], which are used to decide
when to use an axiom or precondition which contains quantifiers.

5 Related work

KeY-Hoare [8] is a tool that serves purposes very similar to HAHA. It uses a vari-
ant of Hoare logic with explicit state updates which allows one to reason about
correctness of a program by means of symbolic forward execution. In contrast,
the assignment rule in more traditional Hoare logics requires backwards reason-
ing, which can be argued to be less natural and harder to learn. Implementation
of the system is based on a modification of the KeY [5] tool.

Why3 [6,15] is a platform for deductive program verification based on the
WhyML language. It allows computed verification condtions to be processed
using a variety of provers, including SMT-based solvers and Coq. WhyML serves
as an intermediate language in verifiers for C [7,10], Ada [20] and Java. It has
also been used in a few courses on formal verification and certified program
construction.

Another tool used in education that must be mentioned here is Dafny [21].
It can be used to verify functional correctness and termination of sequential,
imperative programs with some advanced constructs, such as classes and frame
conditions. Input programs are translated to language of the Boogie verifier,
which uses Z3 to automatically discharge proof obligations.

Some courses on formal semantics and verification use the Coq interactive
theorem prover as a teaching aid [24,17]. Reported results of this approach are
quite promising, but the inherent complexity of a general purpose proof assis-
tant appears to be a major obstacle [24]. One method that has been proposed
to alleviate this issue is to use Coq as a basis of multiple lectures on subjects
ranging from basic propositional logic to Hoare logic [17]. In this way the over-
head necessary to learn to effectively use Coq, or a similar tool, becomes less
prominent.

HAHA avoids problems with steep learning curve of interactive provers by
using an automated solver. It should be noted, however, that having the ability
to examine and experiment with the proof obligations in a tool such as Coq can
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be beneficial for users already familiar with said tool. For this reason, we have
implemented a command which makes it possible to produce Coq formulae from
generated verification conditions.

The complexity of general purpose provers is often a troublesome issue in
education. One can attempts to resolve this problem by creating tools tailored
to specific applications, which sacrifice generality for ease of use. One example
of such a system is SASyLF [1], which is a proof assistant used for teaching
language theory. Another program worth mentioning here is CalcCheck [19]. It
is used to check validity of calculational proofs written in the style of a popular
textbook [16]. This approach is very similar to what we advocate for teaching
Haore logic, as it shows an example of a tool created to fit the style of existing
educational material.

6 Conclusions

We hope that, even though our presentation of HAHA was rather brief, it was
a convincing argument in support of our thesis. While there is certainly a lot of
further work to be done, we have already achieved main goals stated when we
started the HAHA project. The tool has been implemented, and was presented to
some of the students participating in the course on semantics and verification of
programs at the University of Warsaw. Survey conducted among those students
after the final exam showed that our tool is a welcome and useful aid in learning
Hoare logic (there was, of course, also some criticism, especially considering the
documentation, as well as the heavyweight nature of the Eclipse platform).

Let us note that XText and Z3 are not the only tools available to teams which
might endeavour to build a formal verification tool for use in teaching. We have
chosen these technologies as they appeared to best suit our needs and technical
expertise, but there are many alternatives. All major development environments,
such as IDEA, Netbeans or Sharpdevelop, have frameworks for creating domain
specific languages. The use of simple source highlighting components, such as
Scintilla, is also worth investigation. Creating a full fledged editor with all re-
quired features is likely to require significantly more coding, but this is balanced
by increased flexibility and lack of overhead caused by layering multiple frame-
works, which is very typical for platforms such as Eclipse. This last issue proved
to be quite inconvenient during HAHA development, so it is plausible that an
approach that is free of it might prove to be successful. Regarding the solver tech-
nology, one could try to use CVC4 [3], or even try to implement a specialized
solver, which is a very interesting project in itself.
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