
Requirements for Hoare Advanced Homework
Assistant

Tadeusz Sznuk Aleksy Schubert Jacek Chrząszcz

Abstract
The paper collects requirements for HAHA.

Introduction
The current situation in teaching formal aspects of computer programming is notori-
ously difficult mainly because students perceive it as tiresome and obscure. In partic-
ular, a proof of program correctness with help of Hoare logic requires writing annota-
tions that have to be carefully checked afterwards. This process is not very interesting
and is perceived to be as error-prone as writing the program in the first place. That is
why vast majority of students are not motivated to learn program correctness proving
techniques and testing remains their only technique of quality assurance.

The goal of the HAHA tool that we want to create is to ease the task of verifying
that the annotations in the program are sufficient to prove its correctness according to
the Hoare logic rules. Therefore students will concentrate on writing the annotations
and by having an immediate feedback that their work is not (yet) correct, possibly with
some explanation, will be motivated to improve the formulae and try again until the
annotated program passes the verification.

The consequence of having an automated teaching tool to develop proofs of pro-
grams is the possibility to do many more exercises in the same amount of time, with
much better understanding and bigger satisfaction. Consequently, one may expect bet-
ter student motivation and therefore better teaching results.

Due to tediousness of application of the Hoare logic rules, currently one never does
a full Hoare logic derivation. Most rules, like assignment rule or conditional rules are
applied mostly intuitively and only the most difficult ones, like loop rule, are applied
more rigorously. Having an automated tool would bring back the rigour of all Hoare
rules.

Use cases
There are two natural categories of users which might be interested in our tool: [#Stu-
dent students] and [#Tutor tutors].

1



Student
Does her homework

Traditionally, homework assignments take the form of a simple program to which stu-
dents must add assertions and invariants. Typing the solution in an IDE is more con-
venient than writing it by hand and the result is more readable. Besides, a successfully
validated solution is certainly at least formally correct.

The main use case for working on a homework assignment is as follows:

1. The student loads the assignment into HAHA.

2. The student tests the program with example data to understand
how it works.

3. The student enters / corrects formulae.

4. The student immediately sees syntax errors.

5. The student validates the annotated program.

6. The student sees the validation result, in particular is informed
immediately in case of errors.

7. The student analyses the errors and adjusts the formulae (re-
peats steps 3-7).

8. The student creates a package with solution to send out to a
tutor.

Optionally, fragments of lecture notes can be embedded in HAHA (e.g. explanation
of rules) and can be a quick reference if the student gets stuck during a proof. The use
case could be as follows:

1. The student right-clicks on an instruction in a program

2. The student selects “Show Hoare rule” from the context menu

3. The student can see the appropriate Hoare rule, possibly with
its application to the particular instruction in the program.

Prepares for an exam

In preparation for an exam a student should be able to review the material in the most
convenient way as well as practice her abilities to solve proving problems on excerpts
from the course notes, examples given by the tutor, and her own ones. The latter might
be result of (a sequence of) modifications of tutor’s examples, giving the space for the
exploration of the subject and genuine interest of a student in the studied matters. The
expected use cases are variations of the homework use case:

• The student experiments to improve one’s understanding of Hoare logic:

– modifies some parts of the program and tries to adapt the
logical formulae,

– modifies (e.g. simplifies) logical formulae without breaking
the proof of program correctness.

• The student practices by solving exercises form course notes:
– completes the given examples where some of the formulae

are already given

2



Tutor
Prepares exam/homework

The tutor should have a possibility to prepare an assignment in HAHA. Such assign-
ments can be then used for exams or for homeworks. Preparing the assignment on
paper requires special care in

• typesetting of the program to look in a readable way,

• checking all the details of instructions and formulae that they match
ones with the others.

The tutor should be able to follow the scenario

1. The tutor loads an old assignment.

2. The tutor modifies the program in the assignment.

3. The tutor modifies the description of the assignment.

4. The tutor types in the assertions in HAHA and verifies if they
are satisfied.

5. The tutor modifies the program and description of assignment
to make it work.

6. The tutor works in the points 2-6 above until she/he is satisfied.

7. The tutor saves the assignment in the solved version and exports
the unsolved version for students.

The unsolved version of the assignment available for students is given in a file of the
special form which contains the necessary information. It should be, however, possible
to generate PDF version of the assignment so that it can be handed out.

To achieve this the format of the files should make possible to represent programs,
Hoare-like annotations, and descriptions. The Hoare-like annotations and descriptions
should be located in special structured comments that will make possible to sort out
which parts are Hoare assertions, which are assignment descriptions, and which are
just local comments available only to the tutor.

The tutor should also have the possibility to mark which Hoare-like annotations are
exported to the version available for students and which should be hidden from them.

Checks submissions

Verifying proof correctness by hand is tedious and error-prone. Helping the tutor in
this task by a tool is very desirable. Automatic verification allows the tutor to focus on
other aspects of students’ solutions (e.g. style). The HAHA tool should therefore help
in checking students’ submissions in the following aspects:

• the submission is a solution of the original task,

• the submission is a program with correct annotations.

Moreover, checking of a number of solutions should be done as a batch job resulting
in a summary report. As soon as the batch is automatically checked, the tutor should be
able to open each submission individually and evaluate and comment it for the student.
The sequence of actions could be as follows:

3



1. The tutor prepares the directory with the original task and stu-
dents’ solutions.

2. The tutor executes the checking batch job.

3. The tutor reads the report.

4. The tutor opens one submission in the IDE.

5. The tutor evaluates the submission, places some comments in a
dedicated location in GUI.

6. The tutor gives the mark to the submission.

7. The tutor marks the evaluation as finished.

8. The tutor repeats steps 3 to 7 until all students’ solutions are
evaluated.

9. The tutor transmits the comments and marks to the students.

The steps 4 and 5 are essential and do not exceed the requirements resulting from
the usual student use case.

Some management of the group of solutions - which one is already evaluated and
which one is not - is optional (steps 6 and 7).

Launching the batch checking job and presenting the summary report is another
optional requirement (steps 1 and 2), which could be integrated with steps 6 and 7
above.

Transmitting the evaluation results to students (either through email or through
systems such as moodle or USOS) is another optional requirement.

Creates slides or similar content

Tutor or any other person who works with formal methods should be able to gener-
ate some material to present her ideas associated with program verification. Modern
editors support code highlighting. HAHA should support the making of presentations
with these capabilities and provide means to edit content that is not directly interpreted
as a program, but can be exported to some format in which program presentation can
be done. Therefore, the tool

• should make possible to edit non-code parts of the file,

• should make possible to distinguish code parts of the file,

• should make possible to mark which is the expected export format
(HTML and LaTeX should be supported).

The HTML export should be possible in two ways: as a whole webpage (with all
styles and auxiliary files) and as a fragment to be included on a webpage which already
has all necessary styles and files. The sequence of steps could be as follows:

1. The tutor opens a file with some proof of a program.

2. The tutor selects some part of the annotated program.

3. The tutor chooses “export” form the context menu (or main
menu).

4. The tutor chooses the export format: whole web-page, HTML
fragment, TeX fragment, etc.

4



5. The tutor chooses a filename for the exported elements.

6. The export operation is performed.

An important feature of the export operation is that it should be possible to generate
snippets of exported files which can be included in other documents created by the
tutor. This means that the exported code should be readable for humans so that it is
possible to easily adapt its form.

Customizes the tool

We assume that the tool can be used in many academic environments. Each of the
environments will surely have its own minor requirements for the presentation, for
the syntax or for the semantics of the programs that are available in HAHA. The tutor
should be able to adapt with lesser or greater effort the tool to her own needs. Therefore
it should be relatively easy to adapt the tool to many requirements. In particular, it
should be possible to work in a different variant of Hoare logic or to specify a new one.

The adaptability should concern:

• the syntax of the programming language and annotations,

• the visibility of identifiers,

• the way procedure parameters are handled,

• the way semantics of the language is defined.

The adaptation process in most cases will require the tutor to program parts of the
tool. However, it should be clear enough where the programming should take place to
obtain a particular result. This should rather be handled by a tutorial which shows the
tutor which programming task should be accomplished to obtain a particular effect.

Requirements
This section groups requirements that result from the analysis of the use cases presented
in the previous section. The requirements are divided according to their importance into
obligatory, optional, and visionary ones. The first ones are considered to be essential
for the tool to be useful. Implementation of the other ones will make the tool more
convenient to use.

Obligatory requirements
This subsection presents the minimal set of requirements that are necessary to make
HAHA a convenient tool to work with while-programs, their specifications and verifi-
cation using Hoare logic.

Programming language support

The programming language that should be taken into consideration is a classic language
of while-programs over integers. The programs are built from integer constants and
variables using assignment, conditional, while loop and sequence. For convenience the
code snippets of the program are grouped in procedures.

The requirements are listed below:

5



• Classical while-programs.

• Syntax similar to Pascal.

• Grouping construct to form procedures.

• Data structures:
– exact integers,
– 32-bit signed integers with two’s complement arithmetic,
– arrays of base types (no aliasing).

Logical language support

The logical language must be rich enough to express most of the interesting properties
that one would like to say about a piece of program. The basic blocks are first order
formulae using variables and constants, they constitute elements of annotations. The
requirements are listed below:

• Assertions (including postconditions).

• Code preconditions.

• Loop invariants.

• Loop decreases formulae.

• First order formulae in a format similar to boolean expressions in the
language.

Development support

The goal of the HAHA tool is to help users with writing programs, annotating and
verifying them. The first step to do so is to present the written program, as well as
responses from the system in the clearest possible way. The list of specific requirements
follows:

• Syntax highlighting for program and logic part.

• Clear reporting of syntax errors:
– Error markers,
– Clear error messages.

• Completion of identifiers and keywords (Autocompletion / IntelliSense).

• Possibility of exporting coloured code to HTML or LaTeX.

• Integration with help for Hoare logic.

Interpreter

As HAHA is primarily targeted at students, it is important to let them test their code
before or during the verification by Hoare logic. In order to do so an interpreter is
needed that is able to run the program and display the result. The program operates on
states so the environment should make available to a user the possibility:

• to define an initial state,

• to inspect the final state.

6



Verification

The main requirement for HAHA is the integration of a verification machinery with
the program writing process. It consists of a verification conditions generator (VCgen)
and an automatic solver to discharge the generated conditions. To enhance usability,
a support should be provided to deal with unsuccessful verification runs. In particular
location of errors should be easy to find, unproved verification conditions should be
marked and made available for view and it should be relatively easy to understand
where each part of a formula came from in the code. The list of specific requirements
follows:

• Integrated verification conditions generator.

• Verification conditions are discharged automatically with an SMT
solver.

• Verification errors are reported in a manner similar to syntax errors.

• Generated verification conditions are viewable (e.g. can be saved to
a file).

• It should easy to trace back the verification conditions to their origi-
nal location.

Customisation

The tool will make available a basic customisation support. However most of the cus-
tomisation tasks will require a code development. A manual describing the ways of
modifying and extending the tool should be created and maintained.

Additional requirements
This subsection describes features which are not essential for usability of the tool.
Some of these might not be implemented in initial releases of HAHA.

Development support

In program development many tasks may and should be automated. In HAHA this
concerns not only traditional development activities such as variable renaming, but
also concerns activities pertinent to specifications.

• Refactoring:
– Rename variable in code and in specifications.
– Rename procedure name in code and in specifications.
– Add a parameter to a procedure.
– Remove a parameter from a procedure.
– Reorder parameters in the procedure.

• Generate weakest precondition/strongest postcondition based upon
the formulae that are already typed in.

• Warn the user about suspicious programming constructs, e.g. such
as the use of “=” in expressions of languages such as Java or C.

• Help system with Hoare logic rule presentation together with the way
the rule is applied in a particular situation.

7



Tutor support

The extensive automation of the tutor’s work needs support in many activities. The
main situations that require additional functionality are:

• Extracting a program without (some) annotations.

• Batch operation for a number of programs to verify.

• Management of a group of programs (marking them with tags such
as todo / done).

• Comments and marks for programs.

• Sending out comments.

Command-line interface

Some of the tool functionality can be made available with lightweight command-line
tools. The automated tasks should include:

• Syntactic checking the correctness of annotations in program.

• Checking of the assertions with help of Hoare logic.

Internationalisation

We intend HAHA to be usable in different academic institutions around the world.
While a tool with English-only user interface would probably be acceptable in most
cases, we believe that providing students with support for their native languages would
be beneficial.

• Support for easy adding new translations.

• Internationalisation mechanism should support advanced features,
such as pluralisation.

Debugging

Ability to pause a program and inspect its state during execution is very useful in code
development. This is particularly true when one is attempting to solve an assignment
and needs to gain an understanding of the inner workings of an algorithm provided by
a tutor. Some form of debugging support, similar to that provided by modern develop-
ment environments for other languages, should therefore be implemented in HAHA.
Said support should consist of the following features:

• Ability to set breakpoints.

• Single-stepping.

• Visualisation of local values.

Additional programming language support

The language of while-programs for Hoare logic is far from the languages that are
used in real world. Still one may want to teach specification and verification of pro-
grams with particular features. Therefore we may desire to extend the basic format of
programs with additional features. The desirable features to begin with are:

8



• Global variables.

• Recursive calls.

• Different modes of procedure calling (call-by-variable, call-by-reference
etc.)

• Exceptions.

• Memory allocation and deallocation constructs.

• Pointer arithmetic.

Additional logical language constructs

The language of specifications can be extended to make possible to express more com-
plicated properties of programs or to express some of the properties in a more conve-
nient way. The desirable additional constructs to make available in HAHA are:

• Ghost variables.

• The possibility to refer to a initial state (similar to old JML con-
struct).

• Sigma-notation for sums of numbers.

• The formulae to express if a particular piece of code is terminating.

• The formulae to express the termination measure for the particular
code.

• The formulae to express which procedures may be called from a par-
ticular procedure.

The extended programming language support requires more refined ways to specify
program properties. The most desirable kinds of formulae associated with additional
language constructs are:

• The formulae to express which data is modified in a procedure.

• Exceptional procedure postconditions.

• The formulae to express which data is read in a procedure.

• The formulae to express which references can be captured in the
method.

Visionary requirements
In this section we group additional requirements that need some research to be effec-
tively implemented.

Rule definitions

It is desirable to have a single place which defines both Hoare logic procedures and
the way the program is interpreted. Originally this is defined in programming language
semantics, but it is not obvious which is the relevant way to represent programming
language semantics so that it makes possible to define all the bits of HAHA environ-
ment.

9



Web interface

The tool can be made available not only as a standalone application, but also as an
application through web interface. Even a partial web interface would be very useful
for educational websites (e.g. http://wazniak.mimuw.edu.pl). However, this requires at
least good Java support for the necessary GUI operations (e.g. AJAX-based one).

Choice of Hoare logic variants

Once a few variants of Hoare logic are available, a tutor may want to easily switch from
one variant to another. The possible sequence of steps leading to a change in the logic
and programming language is as follows:

1. The tutor opens HAHA preferences dialog.

2. The tutor can browse through available variants of Hoare logic.

3. The tutor selects the needed variant.

4. Consecutive verifications are performed using the selected vari-
ant.

10

http://wazniak.mimuw.edu.pl

	Introduction
	Use cases
	Student
	Does her homework
	Prepares for an exam

	Tutor
	Prepares exam/homework
	Checks submissions
	Creates slides or similar content
	Customizes the tool


	Requirements
	Obligatory requirements
	Programming language support
	Logical language support
	Development support
	Interpreter
	Verification
	Customisation

	Additional requirements
	Development support
	Tutor support
	Command-line interface
	Internationalisation
	Debugging
	Additional programming language support
	Additional logical language constructs

	Visionary requirements
	Rule definitions
	Web interface
	Choice of Hoare logic variants



